h+ Magazine

Winter 2009

Issue link: http://read.uberflip.com/i/5219

Contents of this Issue

Navigation

Page 62 of 89

63 www.hplusmagazine.com But in 2009, we have fast and cheap computer chips that offer very precise control over motors that can create compressive forces in mere microseconds. "We got to the point in the '70s and '80s that we could get plasma to last milliseconds. The question was how to control it. Now, with cheap digital signal processors," at this point Richardson points at my iPhone, "it can be done." And it only has to be done once. If General Fusion can prove they've produced net gain through fusion, the world will beat a path to their door. "The next stage would be to build a reactor at the same scale, but with the ability to reliably produce energy at a rate of once every thousand seconds. From there fusion will eventually scale up into power plants, a development Richardson estimates will cost upwards of $1 billion, but it will be a cost born by industries who will benefit immensely from the potential benefits of fusion power. Richardson: "If you look at the scale of spending on energy research and development, $50 million is peanuts. The oil and gas industry spends $20 billion to develop and deploy technology in the Alberta tar sands right now." BaD ReP: The PonS ScheMe Technical and scientific challenges are only part of the long uphill climb faced by companies working on developing fusion. There is also public skepticism. A lack of tangible results, even after decades of work and billions of dollars, has left fusion with a reputation for, in Richardson's words, being "30 years away for the past 30 years." Perhaps the lowest ebb for fusion's public reputation was the infamous Fleischmann-Pons announcement in 1989. university of Southampton researcher Martin Fleischmann and university of utah researcher Stanley Pons stunned the world when they claimed they had produced excess heat during the electrolysis of heavy water on a palladium electrode. The magnitude of the heat production was high enough that they said it could only be explained as a nuclear process. When the two researchers couldn't reproduce their experiment, fusion earned a black eye that it still hasn't fully recovered from. General Fusion has to face a general pubic that is at best apathetic and at worst dismissive. But that's not all. Because they're attempting something no one else has been able to achieve, and doing it on the cheap, they run into an equal amount of skepticism within the fusion community itself. Many fusion projects are mammoth undertakings funded with billions of dollars of government money. Each project requires hundreds of scientists and technicians — all smart people who, after several decades, still can't produce a controllable fusion reaction. When a startup like General Fusion decides it will tackle fusion from a small space in the middle of suburban vancouver, the default position of many in the fusion establishment is negative. Richardson sighs: "There's a feeling that the research has to be done by a government, that it costs billions of dollars and that 3,000 smart people can't be wrong. People have a mindset that this can't be done by a small company, and overall I'm disappointed with that attitude. Those involved in science should be curious, but it's easier to just dismiss us." unlike the discredited cold fusion experiments and even the "legitimate" fusion researchers, General Fusion isn't interested in discovering anything. In fact, they're going out of their way to stick to what they know. "We're boring," Richardson says. "This is basic stuff, and all we're doing is taking other people's ideas and going down a path that no one has taken yet," Richardson said. WoRlD changeR Boring? Maybe. But the benefits from controlled fusion will be anything but boring. While Richardson cautions that it makes little sense to power a car or other small devices via fusion, power plants and other large scale projects do make sense, and would be much more environmentally sound than current coal-fired electrical plants. Richardson: "You can buy an electric car today, but all that does is created 'distributed pollution.' For that car to run, at some point someone had to burn coal." With fusion, which runs off tanks of heavy water, no such pollution is created. "Electric plants in the united States take three trainloads of coal a day, but you could run a fusion reactor with one truckload of heavy water for a year," he said. And while he says that current spacecraft designs aren't well suited for fusion engines, it's important to remember how low on the developmental curve we currently reside. "When the Wright Brothers flew their plane in 1903, no one could predict 747s only 60 years later, or planes breaking the speed of sound. We didn't even know what metal fatigue was until we had planes regularly flying in the air. When man wants to innovate, it will happen. Fusion will evolve, and it will be cheaper, faster, and better," he said. But right now, the staff is gathered around their ragtag collection of batteries and fuses watching an oscilloscope as they test a switch. And as I leave the office, I get the feeling that I know what people who walked out of Apple's formative garage or the Google founder's dorm rooms must have felt like. The future may be lying in partially assembled pieces in vancouver, just waiting to be put together and switched on, so it can change the world. Warren Frey is a filmmaker and journalist and can be contacted at freyburgmedia.com. researcher Martin Fleischmann and Pons stunned the world when they claimed they had produced excess heat during the electrolysis of heavy water on a palladium electrode. The heat during the electrolysis of heavy water on a palladium electrode. The magnitude of the heat production was high enough that they said it could only be explained as a nuclear process. When the two researchers couldn't reproduce their experiment, fusion earned a black eye that it still hasn't fully recovered from. at worst dismissive. But that's not all. Because they're attempting something no one else has been able to achieve, and doing it on the cheap, they run into an equal amount of skepticism within the fusion community itself. Many fusion projects are mammoth undertakings funded with billions of dollars of government money. Each project requires hundreds of scientists and technicians — all smart people who, after several decades, still can't produce a controllable fusion reaction. When a startup like General Fusion decides it will tackle fusion from a small space in the middle of suburban default position of many in the fusion establishment is negative. by a government, that it costs billions of dollars and that 3,000 smart people can't be wrong. People have a mindset that this can't be done by a small company, and overall I'm disappointed with that attitude. Those involved in science should be curious, but it's easier to just dismiss us." the discredited cold fusion experiments and even the "legitimate" fusion researchers, General Fusion isn't interested in discovering anything. In fact, they're going out of their way to stick to what they know. "We're boring," Richardson says. "This is basic stuff, and all we're doing is taking other people's ideas and going down a path that no one has taken yet," Richardson said. Building a low-tech but potentially revolutionary device capable of delivering virtually unlimited clean energy for the planet. resources General Fusion Inc. http://www.generalfusion.com/ Building a low-tech but potentially

Articles in this issue

Archives of this issue

view archives of h+ Magazine - Winter 2009