White Papers

Understanding OPNFV

Issue link: https://read.uberflip.com/i/1344850

Contents of this Issue

Navigation

Page 16 of 144

Understanding OPNFV 16 What is NFV? In the beginning, there was proprietary hardware. We've come a long way since the days of hundreds of wires connected to a single tower, but even when communications services were first computerized, it was usually with the help of purpose-built hardware such as switches, routers, firewalls, load balancers, mobile networking nodes and policy platforms. Advances in communications technology moved in tandem with hardware improvements, which was slow enough that there was time for new equipment to be developed and implemented, and for old equipment to be either removed or relegated to lesser roles. This situation applied to phone companies and internet service providers, of course, but it also applied to large enterprises that controlled their own IT infrastructure. Today, due largely to the advent of mobile networking and cloud computing, heightened user demands in both consumer and enterprise networks have led to unpredictable ("anytime, anywhere") traffic patterns and a need for new services such as voice and video over portable devices. What's more, constant improvement in consumer devices and transmission technology continue to evolve these themes. This need for agility led to the development of Software Defined Networking (SDN). SDN enables administrators to easily configure, provision, and control networks, subnets, and other networking architectures on demand and in a repeatable way over commodity hardware, rather than having to manually configure proprietary hardware. SDN also made it possible to provide "infrastructure as code," where configuration information and DevOps scripts can be subject to the same oversight and version control as other applications. Of course, there was still the matter of those proprietary hardware boxes. Getting rid of them wasn't as simple as deploying an SDN; they were there for a reason, and that reason usually had to do with performance or specialized functionality. But with advances in semiconductor performance and the ability of conventional compute hardware to perform sophisticated packet processing functions came the ability to virtualize and consolidate these specialized networking functions. And so, Network Functions Virtualization (NFV) was born. NFV enables complex network functions to be performed on compute nodes in data centers. A network function performed on a

Articles in this issue

view archives of White Papers - Understanding OPNFV